Initiality for Typed Syntax and Semantics
نویسنده
چکیده
We give an algebraic characterization of the syntax and semantics of a class of simply–typed languages, such as the language PCF: we characterize simply–typed binding syntax equipped with reduction rules via a universal property, namely as the initial object of some category. For this purpose, we employ techniques developed in two previous works: in [2], we model syntactic translations between languages over different sets of types as initial morphisms in a category of models. In [1], we characterize untyped syntax with reduction rules as initial object in a category of models. In the present work, we show that those techniques are modular enough to be combined: we thus characterize simply–typed syntax with reduction rules as initial object in a category. The universal property yields an operator which allows to specify translations — that are semantically faithful by construction — between languages over possibly different sets of types. We specify a language by a 2–signature, that is, a signature on two levels: the syntactic level specifies the types and terms of the language, and associates a type to each term. The semantic level specifies, through inequations, reduction rules on the terms of the language. To any given 2–signature we associate a category of models. We prove that this category has an initial object, which integrates the types and terms freely generated by the 2–signature, and the reduction relation on those terms generated by the given inequations. We call this object the (programming) language generated by the 2–signature.
منابع مشابه
Extended Initiality for Typed Abstract Syntax
Initial Semantics aims at interpreting the syntax associated to a signature as the initial object of some category of “models”, yielding induction and recursion principles for abstract syntax. Zsidó [Zsi10, Chap. 6] proves an initiality result for simply–typed syntax: given a signature S, the abstract syntax associated to S constitutes the initial object in a category of models of S in monads. ...
متن کاملInitial Semantics for higher-order typed syntax
We present an initial semantics result for typed higher-order syntax based on monads and modules over monads. The notion of module generalizes the substitution structure of monads. For a simply typed binding signature S we define a representation of S to be a monad equipped with a morphism of modules for each of its arities. The monad of abstract syntax of S then is the initial object in the ca...
متن کاملBenedikt Ahrens: Initiality for Typed Syntax and Semantics
We give an algebraic characterization of the syntax and semantics of a class of simply–typed languages, such as the language PCF: we characterize simply–typed binding syntax equipped with reduction rules via a universal property, namely as the initial object of some category. For this purpose, we employ techniques developed in two previous works: in [2], we model syntactic translations between ...
متن کاملModules over relative monads for syntax and semantics
The goal of this article is to give an algebraic characterisation of the abstract syntax of functional programming languages, equipped with reduction rules. We introduce a notion of 2–signature: such a signature specifies not only the terms of a language, but also reduction rules on those terms. To any 2–signature S we associate a category of “models” of S, and we prove that this category has a...
متن کاملReverse Engineering of Network Software Binary Codes for Identification of Syntax and Semantics of Protocol Messages
Reverse engineering of network applications especially from the security point of view is of high importance and interest. Many network applications use proprietary protocols which specifications are not publicly available. Reverse engineering of such applications could provide us with vital information to understand their embedded unknown protocols. This could facilitate many tasks including d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012